Assembled Cantilever Fiber Touch Trigger Probe for Three-Dimensional Measurement of Microstructures
نویسندگان
چکیده
In this paper, an assembled cantilever fiber touch trigger probe was developed for three-dimensional measurements of clear microstructures. The probe consists of a shaft assembled vertically to an optical fiber cantilever and a probing sphere located at the free end of the shaft. The laser is emitted from the free end of the fiber cantilever and converges on the photosensitive surface of the camera through the lens. The position shift of the light spot centroid was used to detect the performance of the optical fiber cantilever, which changed dramatically when the probing sphere touched the objects being measured. Experimental results indicated that the sensing system has sensitivities of 3.32 pixels/μm, 1.35 pixels/μm, and 7.38 pixels/μm in the x, y, and z directions, respectively, and resolutions of 10 nm, 30 nm, and 5 nm were achieved in the x, y, and z, respectively. An experiment on micro slit measurement was performed to verify the high aspect ratio measurement capability of the assembled cantilever fiber (ACF) probe and to calibrate the effective two-point diameter of the probing sphere. The two-point probe sphere diameter was found to be 174.634 μm with a standard uncertainly of 0.045 μm.
منابع مشابه
Study of the flexural sensitivity and resonant frequency of an inclined AFM cantilever with sidewall probe
The resonant frequency and sensitivity of an atomic force microscope (AFM) cantilever with assembled cantilever probe (ACP) have been analyzed and a closed-form expression for the sensitivity of vibration modes has been obtained. The proposed ACP comprises an inclined cantilever and extension, and a tip located at the free end of the extension, which makes the AFM capable of topography at sidew...
متن کاملStudy of the flexural sensitivity and resonant frequency of an inclined AFM cantilever with sidewall probe
The resonant frequency and sensitivity of an atomic force microscope (AFM) cantilever with assembled cantilever probe (ACP) have been analyzed and a closed-form expression for the sensitivity of vibration modes has been obtained. The proposed ACP comprises an inclined cantilever and extension, and a tip located at the free end of the extension, which makes the AFM capable of topography at sidew...
متن کاملSensitivity analysis of a caliper formed atomic force microscope cantilever based on a modified couple stress theory
A relationship based on the modified couple stress theory is developed to investigate the flexural sensitivity of an atomic force microscope (AFM) with assembled cantilever probe (ACP). This ACP comprises a horizontal cantilever, two vertical extensions and two tips located at the free ends of the extensions which form a caliper. An approximate solution to the flexural vibration problem is obta...
متن کاملSensitivity analysis of a caliper formed atomic force microscope cantilever based on a modified couple stress theory
A relationship based on the modified couple stress theory is developed to investigate the flexural sensitivity of an atomic force microscope (AFM) with assembled cantilever probe (ACP). This ACP comprises a horizontal cantilever, two vertical extensions and two tips located at the free ends of the extensions which form a caliper. An approximate solution to the flexural vibration problem is obta...
متن کاملStudy of the size-dependant vibration behavior of an AFM microcantilever with a sidewall probe
In this paper, the resonant frequency and sensitivity of an atomic force microscope (AFM) with an assembled cantilever probe (ACP) are analyzed utilizing the modified couple stress theory. The proposed ACP comprises a horizontal microcantilever, an extension and a tip located at the free end of the extension, which make AFM capable of scanning the sample sidewall. First, the governing different...
متن کامل